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1. Summary

This white paper explores how CrateDB provides a scalable platform to build
Generative Al applications that cover the requirements of modern applications,
such as Al-driven knowledge assistants. CrateDB is not just handling vectors, but
also provides in a single storage engine a unique combination of all the data types
needed for end-to-end applications, including RAG pipelines.

With CrateDB, you can:

- Combine vectors with tables, time-series, JSON, geospatial and full-text
data.

- Mix all types of data in a single record.

. Insert, update, and delete data with standard SQL or HTTP API.

« Perform queries in milli-seconds and scale horizontally, as the volume
grows.

« Query all your data from a single database, eliminating the need for complex
data synchronization and reducing cost significantly.
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2. Introduction to Key Concepts for
Generative Al

What is Generative Al?

Generative Al refers to a collection of artificial intelligence techniques capable of
creating new content derived from the training data they have been fed with,
combined with additional context provided by users. This content can encompass
text, code, images, audio, and video.
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Generative Al relies on Large Language Models (LLMs), which undergo training
using diverse, usually publicly available, datasets.

Application users provide prompts or instructions to these models, asking them
to generate output in various formats such as text, images, audio, or videos,
depending on the specific model being employed.

Challenges of Generative Al

The potential of generative Al is huge, but it also presents several challenges:

- Quality & reliability: LLMs tend to hallucinate, so quality and reliability are
crucial factors in the content generated by Al models. Enforcing them involves
maintaining accuracy and considering the timeliness of data input. The goal is
to produce information that is not only relevant but also accurate and
trustworthy.
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. Ethical & societal: Generative Al raises ethical considerations, such as the
creation of deepfakes, which could lead to serious privacy concerns.

- Computational costs & environmental impact: The significant
computational costs and environmental impact of generative Al, such as
energy consumption equivalent to charging a phone for image generation,
must be considered.

. Intellectual property & copyright: Legal questions also arise, particularly
around intellectual property and copyright. It's crucial to determine who owns
the copyright of the generated content and ensure that the models are not
trained on copyrighted content used to generate new content.

- Managing & governing Al: Appropriate frameworks for the development
and deployment of generative Al technologies are essential to ensure proper
management and governance. There are still several open questions in this
space, particularly around accuracy (most recent information needs to be
available for meaningful answers) and the use of private data (properly
tagging it as internal, confidential, sensitive, subject to privacy regulations).

Providing Custom Context and Private Data in Generative Al

Foundational models are trained on publicly available content. There are different
ways to provide custom context to these models. The list below is ordered by
increasing level of difficulty (combining development effort, Al skills, compute
costs, and hardware needs):

Prompt engineering. In generative Al, custom context can be provided simply
through prompt engineering, which involves giving specific instructions to the
model. This is easily adjustable and can be guided by prompt templates. This is
the simplest approach to give specific instructions and has a high degree of
flexibility for adapting the LLM and prompt templates. It is ideal for use cases that
do not need much domain context.

Retrieval Augmented Generation (RAG) offers the highest degree of flexibility to
change different components (data sources, embeddings, LLM, vector database).
It reduces hallucinations and keeps the output quality high by providing the
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particular context for reponse generation based on private, i.e. company-owned
data. Knowledge is not incorporated into the LLM. Access control can be
implemented to manage who is allowed to access which context.

Fine-tuning incorporates more context into the foundational model by adjusting
parameters, which is particularly useful in building domain-specific models (in the
legal and biology industries for example). However, it lacks access control, is
prone to hallucination, and can be influenced by a single incorrect training data
entry.

Training a custom foundational model allows a high degree of customization
but requires significant resources: trillions of well curated tokenized data points,
sophisticated hardware infrastructure and a team of highly skilled ML experts.
You should also have a significant budget and time for such initiatives.

Understanding RAG Pipelines

Retrieval Augmented Generation (RAG) pipelines are pivotal in the realm of
generative Al. They are essentially a two-phase process: data preparation and
data retrieval.

Phase 1: Data Preparation

During the data preparation phase, raw data such as text, audio, etc., is extracted
and divided into smaller chunks. These chunks are then translated into
embeddings and stored in a vector database. It is important to store the chunks
and their metadata together with the embeddings in order to reference back to the
actual source of information in the retrieval phase.

Phase 2: Data Retrieval

The retrieval phase is initiated by a user prompt or question. An embedding of this
prompt is created and used to search for the most similar pieces of content in the
vector database. The relevant data extracted from the source data is used as
context, along with the original question, for the Large Language Model (LLM) to
generate a response.
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Structure of a RAG Pipeline

While this is a simplified representation of the process, the real-world
implementation involves more intricate steps. Questions such as how to properly
chunk and extract information from sources like PDF files or documentation and
how to define and measure relevance for re-ranking results are part of broader
considerations. We will explore in this paper how CrateDB provides the flexibility
needed for storing and querying both vector and contextual data.
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3. Architecture of Knowledge
Assistants

The overall architecture of a knowledge assistant usually consists of four parts:
Context Data, LLM Gateway, Chatbot, as well as Monitoring and Reporting.

Context Data

Contextual data is the foundation for knowledge assistants, where vast amounts
of data are processed and prepared for retrieval. It is crucial for the enterprise-
specific intelligence. This data is derived from various sources, chunked, and
stored alongside embeddings in a vector store. Access to this data needs to be
controlled and monitored.
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Context data is usually prepared following common principles for creating data
pipelines. A landing zone stores incoming data in various formats, which can be
structured, semi-structured, or unstructured, even binary sometimes. Then, input
data is split into smaller consumable chunks to generate embeddings. Both
chunks and vectors are stored together, in order to reference which contextual
information is extracted from which source. Data access should be carefully
governed in order to avoid unauthorized access, for example by creating multiple
search indexes that are secured with privileges at the database or application
level.
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For more complex data pipelines, knowledge APIs provide access to additional
data sources to vectorize (e.g. wikis), or directory services for data access
control.

LLM Gateway

The LLM component provides a gateway to different embedding models,
depending on the use case and type of data being embedded. A LLM service
encapsulates the interaction with LLMs and chooses from the most appropriate
LLM for the particular use case.
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LLM logging mainly tracks costs associated with using LLMs (e.g. tokens
generated, subscriptions). It helps manage operational budget and optimize
resource allocation. Additionally, all interactions are logged to understand usage
patterns and help with troubleshooting and improvements.

Chatbot

The chatbot interface provided to users is usually a web or a mobile application
consisting of multiple components:

« The input handler analyses the request and enforces some guardrails (there
might be some questions we don’t want to answer).

- The response formation retrieves and enriches the context.

« The output handler enforces some final guardrails and grounding of the
results to avoid some undesired answers and reduce hallucinations.
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Configuration stores and operational stores are used for conversation history,
user settings, feedback, and other critical operational data essential for the
knowledge assistant to be functional. Conversation history is particularly
important for providing historic context to the LLM, and enhancing the relevance
of responses in ongoing interactions.

Monitoring and Reporting

Monitoring and reporting are crucial to understand the actual system usage
(usage reports), the costs occurred by the different components and users (cost
reports), and to get insights into the data sources used (data reports).
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Monitoring and reporting are divided into three core components:

- Usage monitoring aims to monitor closely how the solution is utilized across
the organization (metrics: number of user interactions, peak usage times,
types of queries being processed). Understanding usage patterns is crucial for
effective scaling and to meet the evolving needs of the company.

10
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Cost analysis serves to track and analyze all operational expenses (token
consumption by LLMs, data processing, and other computational resources).
This promotes effective budget management and assists in identifying
opportunities for cost optimization.

Data analytics provides a comprehensive view of the performance and
effectiveness, including response accuracy, user satisfaction, and overall
efficiency of operations. It plays a pivotal role in guiding future improvements,
ensuring the solution remains a cutting-edge tool for the company.
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4. Pivotal Role of CrateDB in Unified
Data Management

CrateDB can be beneficially employed in the outlined architecture for knowledge
assistants below, providing a unified data platform for landing zones, chunks,
embeddings, configurations, operational stores, and logging and reporting
functionalities. This greatly simplifies the architecture, replacing the need for
multiple different database technologies with a single solution.
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CrateDB as a single solution for data needs in a knowledge assistant

The Issue of Proliferating Database Technologies

Unfortunately, the landscape of data challenges is shaped by the complexity and
constant evolution of data architecture. It's common to begin with relational
technology due to its familiarity. As user requirements continually evolve and
expand, developers often find themselves incorporating additional capabilities
into their applications, such as full-text search engines, document, and vector
databases. When thinking of real-world applications, maintaining and scaling
such a heterogeneous infrastructure can be time-consuming and resource
intensive. Moreover, each new technology oftentimes requires learning a new
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language, which drastically increases the effort needed to develop new
applications.

This results in big impacts in terms of people, time and money: highly skilled
people need to be hired for each language and technology and the effort is very
high to keep all systems in sync. Both time to market and time for changes
significantly increase, resulting in a high total cost of ownership.
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Proliferation of database technologies in the enterprise IT landscape

How CrateDB Can Help

As Al adoption continues to grow, the need for databases that can adapt to
complex data landscapes becomes paramount. Leveraging a multi-model
database capable of managing both structured, semi-structured, and
unstructured data, is an ideal fit to serve as the foundation for data modelling
and application development in Al/ML scenarios. It is an enabler of complex,
contextual-rich, and real-time intelligent applications.

Here is where CrateDB comes into play. It offers a unified representation of
diverse data types with high performance, scalability, and flexibility - all with
native SQL, tailored for Al integration.
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Unified data management with CrateDB

CrateDB combines diverse data types into single records accessible via SQL,
making it easy to adopt by developers already familiar with relational databases.

Beyond native SQL, CrateDB offers dynamic schema capabilities, allowing
schema changes on the fly and custom logic definition. Backed by a distributed
storage and query engine, CrateDB supports high volume reads and writes,
optimal for real-time scenarios and fast, complex query performance. It uses
columnar storage, with all attributes indexed by default or in a custom mode,
and ensures high availability and horizontal scalability by managing data
distribution across added nodes. Finally, CrateDB can be deployed in various
scenarios: as a fully managed cloud service (available on AWS, Azure, and
GCP), or self-deployed on-premises, on private cloud, in hybrid architectures,
or even on edge devices.

Al Ecosystem Integration

SQL is the most popular query language and allows many 3rd party integrations,
which is crucial when building a complex Al/ML architecture.

CrateDB's compatibility with SQL enables seamless integration into a wide array
of ecosystems - whether it is data ingestion or integration with familiar tools like
Kafka, Nifi, Flink, or any SQL-compatible tool. CrateDB also supports custom
code writing, catering to specific needs.

14
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CrateDB offers robust Python integration for model training and inference.

Other programming languages, such as Java and Spark, are also supported,
broadening the scope for application development.

Regarding Al visualization, CrateDB integrates with various tools like Grafana,
Tableau or Power Bl, Google Looker, and Python libraries such as Matplotlib or

Plotly. These tools can be used in conjunction to build custom applications on
top of CrateDB.

Applications that require Machine Learning and Al capabilities, such as Natural
Language Processing (NLP), chatbots, classification, anomaly detection,
and predictions, can easily integrate with CrateDB. It's also compatible with a
number of orchestration frameworks. Furthermore, if you need to track your
model training and execution, CrateDB can be used as the backend for MLflow,
providing a comprehensive solution for your Al and Machine Learning initiatives.
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CrateDB integration with the Al ecosystem

LangChain Integration

LangChain is a popular framework for developing applications powered by
language models. It enables applications that:

- Are context-aware: connect a language model to sources of context such as
prompt instructions.

« Can Reason: rely on a language model to reason (defining ways to answer
based on provided context, defining actions to take, etc.)
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LangChain can easily integrate with CrateDB and the integration offers these
capabilities:

« Vector store: store embeddings in CrateDB

- Document loader: load documents from CrateDB via SQL

« Message history: store conversations (use prompts, system prompts, Al
responses). It enables the model to remember and maintain context
throughout a conversation with a user.

It enables to create embeddings and chats and provides access to over 70
different LLMs.

If you want to learn more about this particular

integration, ready-made examples are available in our
GitHub repository.

16


https://github.com/crate/cratedb-examples/tree/main/topic/machine-learning/llm-langchain

CrateDB

5. Vector Store Implementation with
CrateDB

In the context of Generative Al, multimodal vector embeddings are getting
more popular. No matter the kind of source data—text, images, audio, or video—
an embedding algorithm of your choice is used to translate the given data into a
vector representation. This vector comprises numerous values, the length of
which can vary based on the algorithm used. These vectors, along with chunks of
the source data, are then stored in a vector store.

Vector databases are ideal for tasks such as similarity search, natural
language processing, and computer vision. They provide a structured way to
comprehend intricate patterns within large volumes of data. The process of
integrating this vector data with CrateDB is straightforward, thanks to its native
SQL interface.

Text

[0.2,0.3,0.1,...]
Images |:> :{> [0.5,0.3,0.8, ...] |:{>
: [06,0.7,0.1, ...]
Audio
Embedding Model Vectors / Vector
of your choice Embeddings Store
Video

CrateDB offers a FLOAT_VECTOR(n) data type, where you specify the length of
the vector. This creates an HNSW (Hierarchical Navigable Small World) graph in
the background for efficient nearest neighbour search. The KNN_MATCH
function executes an approximate K-nearest neighbour (KNN) search and uses
the Euclidean distance algorithm to determine similar vectors. You just need to
input the target vector and specify the number of nearest neighbours you wish to
discover.

The example below illustrates the creation of a table with both a text field and a
4-dimension embedding field, the record insertion into the table with a simple
INSERT INTO command, and the usage of the KNN_MATCH function to perform
a similarity search.
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CREATE TABLE word_embeddings (
text STRING PRIMARY KEY,
embedding FLOAT_VECTOR(4)

);

INSERT INTO word_embeddings (text, embedding)

VALUES
('Exploring the cosmos', [0.1, 0.5, -0.2, 0.8]),
('Discovering moon', [0.2, 0.4, 0.1, 0.7]),
('Discovering galaxies', [0.2, 0.4, 0.2, 0.9]),
('sending the mission', [0.5, 0.9, -0.1, -0.7]);

SELECT text, _score

FROM word_embeddings

WHERE knn_match(embedding, [0.3, 6.6, 0.6, 06.9], 2)
ORDER BY _score DESC,;

Discovering galaxies| 0.917431
Discovering moon | ©.909090
Exploring the cosmos| 0.909090
Sending the mission | 0.270270

The example below shows you how to search for data similar to ‘Discovering
Galaxy'in your table. For that, you use the KNN_MATCH function combined with
a sub-select query that returns the embedding associated to ‘Discovering
Galaxies'.

SELECT text, _score

FROM word_embeddings

WHERE knn_match(embedding, (SELECT embedding FROM word_embeddings
WHERE text ='Discovering galaxies'), 2)

ORDER BY _score DESC;

| text | _score |
| —=mmm oo | —=mmmmm - |
Discovering galaxies| 1

Discovering moon | ©.952381
Exploring the cosmos| 0.840336
Sending the mission | 0.250626
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Combining Vectors, Source and Contextual Information

Combining your vector data (vectorized chunks of your source data) with the
original data and some additional contextual information is very powerful.

As we will outline in this chapter, JSON payload offers the most flexible way to
store and query your metadata information. A typical table schema would contain
a FLOAT_VECTOR column for the embedding and a OBJECT column to contain
the source and contextual information.

In the example below, the table contains a FLOAT_VECTOR column with 1536
dimensions. If you are using multiple embedding algorithms, you can add new
columns with a different vector length value.

CREATE TABLE input_values (
source OBJECT(DYNAMIC),
embedding FLOAT_VECTOR(1536)
I

In an INSERT statement, you can simply put your existing JSON data, such as a
chunk of text extracted from a PDF file or any other information source. Then,
you use your preferred algorithm to generate an embedding, which is inserted
into the table. If subsequent source data pieces have different annotations,
context information, or metadata, you can simply add it to your JSON document,
which is automatically updated as new columns in the table.

INSERT INTO input_values (source, embedding) VALUES (
"{ "id": "chunk_601",
"text": "This is the first chunk of text. It contains some
information that will be vectorized.",
"metadata": {
"author": "Author A",
"date": "2024-03-15",

"category": "Education"
}!
"annotations": [
{ "type": "keyword", "value": "vectorized" },
{ "type": "sentiment", "value": "neutral" }
1

"context": {
"previous_chunk": "",
"next_chunk": "chunk_002",
"related_topics": ["Data Processing", "Machine Learning"]
}
}l
[1.2, 2.1, ..., 3.2]
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Adding Filters to Similarity Search

You can also add query filters to your similarity search easily.

The example below shows you how to search for similar text snippets in the
'Education’ category. CrateDB’s flexibility allows you to use any other filters as
per your needs, such as geospatial shapes, making it adaptable to your specific
use case requirements.

sourcel['id'],
source['text']

input_values
W
knn_match(embedding, 7,10)
AND source[’metadata’][’category’] = ‘Education’

_Score
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6. Comprehensive Use Case:
Automated Warehouse Operations

TGW Logistics Group is one of the leading international suppliers of material
handling solutions. For more than 50 years, the Austrian specialist has
implemented automated systems for its international customers, including brands
from A as in Adidas to Z as in Zalando. As systems integrator, TGW plans,
produces and implements complex logistics centres, from mechatronic products
and robots to control systems and software.

The use case for TGW is to expedite the aggregation and access of large
amounts of varied data collected in real-time from warehouse systems worldwide.
Their warehouse solutions typically consist of the shuttle engine (the actual
warehouse), a conveyor network, and pick centers where goods are packaged
for shipping.

i1 W

LIVING LOGISTICS

o Shuttle Engine

€© conveyor Network

o PickCenter One

o PickCenter Rovolution

The Digital Twin of the warehouses is used to offer Digital Assistants in the
following ways:

|| Process Monitoring

« Implements data-driven and Al-based supervision of logistic processes that
constantly monitors warehouse operations.
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- ldentifies anomalies in the processes, such as a decrease in picking
performance.

« Notifies the operator when actions need to be taken to rectify the anomalies.

« Recommends actions to remove the identified anomalies.

Example: Anomaly Detection in a Pickcenter

« Anomalies can arise from the interruption in the supply of source totes,
affecting picking performance.

« Interruption in the supply of target totes can also be an anomaly.

« The presence of a slow picker or an unplanned picker break can also lead to
decreased performance.

Example: Recommendations for Pickcenter

« The system can recommend opening another pickcenter based on different
order profiles and shipping times.

« This ensures that all shipping times are met and there are no delays in order
delivery.

. For instance, if an error causes the warehouse to stand still and miss the
shipping time, it can affect the order delivery for the clients.

RECOMMENDATION FOR PICKCENTER

Digital Assistant ~
. There are no
Do | need to open or close pick centers? ) .
recommendations available
at the moment.

Digital Assistant ~

Turn on PCOTS2. Currently, orders
will not be completed in time for
the following shipments: 16:00 -
30.10.2023 and 16:00-01.11.2023

Digital Assistant ~

Turn off PCOTSS and PCOTSE.

Currently, orders will be

completed 5:00 hours too early.

This digital twin got enriched by a Q&A knowledge management application,
which relies on vectorized contextual information from technical documentation,
maintenance reports, legal documents, HR documents, and other company-
internal information.
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For each of these different sources, a vector index (i.e. a table in CrateDB) has
been created in order to build an application on top that implements an RAG
pipeline for various user groups ranging from maintenance workers, over sales to
any employee of the company searching for information. This approach allows a
multi-index search by querying different tables in CrateDB and providing context
from one or more datasets in the RAG pipeline. Separating the information allows
to find more relevant and precise context as well as defining privileges at the
database level to protect sensitive information like legal documents.

Looking ahead, TGW envisions a further combination of these diverse datasets.
The ultimate goal is to provide an agent-based assistant for their end-customers,
designed to navigate the various machine learning solutions, extract solutions,
reason, and ultimately suggest an appropriate solution to a problem. This is seen
as the future direction in the industrial context, where the complexity of systems
and the need for domain knowledge require such advanced, data-driven
solutions.



CrateDB is the enterprise database for time series, documents
and vectors. It combines the simplicity of SQL, and the
performance of NoSQL, providing instant insights into these
different types of data. It is enabled for Al and is used for a
large variety of use cases, including Real-time Analytics, Al/ML,
chatbots, loT, digital twins, log analysis, cyber security,
application monitoring, and database consolidation.

Contact us to learn more, or visit cratedb.com to understand
how we can help with your data needs.
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